An Empirical Comparison of Supervised Learning Algorithms in Disease Detection
نویسندگان
چکیده
In this paper empirical comparison is carried out with various supervised algorithms. We studied the performance criterion of the machine learning tools such as Naïve Bayes, Support vector machines, Radial basis neural networks, Decision trees J48 and simple CART in detecting diseases. We used both binary and multi class data sets namely WBC, WDBC, Pima Indians Diabetes database and Breast tissue from UCI machine learning depositary. The experiments are conducted in WEKA. The aim of this research is to find out the best classifier with respect to disease detection.
منابع مشابه
دستهبندی دادههای دوردهای با ابرمستطیل موازی محورهای مختصات
One of the machine learning tasks is supervised learning. In supervised learning we infer a function from labeled training data. The goal of supervised learning algorithms is learning a good hypothesis that minimizes the sum of the errors. A wide range of supervised algorithms is available such as decision tress, SVM, and KNN methods. In this paper we focus on decision tree algorithms. When we ...
متن کاملIntelligent application for Heart disease detection using Hybrid Optimization algorithm
Prediction of heart disease is very important because it is one of the causes of death around the world. Moreover, heart disease prediction in the early stage plays a main role in the treatment and recovery disease and reduces costs of diagnosis disease and side effects it. Machine learning algorithms are able to identify an effective pattern for diagnosis and treatment of the disease and ident...
متن کاملAn Empirical Comparison of SVM and Some Supervised Learning Algorithms for Vowel recognition
In this article, we conduct a study on the performance of some supervised learning algorithms for vowel recognition. This study aims to compare the accuracy of each algorithm. Thus, we present an empirical comparison between five supervised learning classifiers and two combined classifiers: SVM, KNN, Naive Bayes, Quadratic Bayes Normal (QDC) and Nearst Mean. Those algorithms were tested for vow...
متن کاملAutomated Detection of Multiple Sclerosis Lesions Using Texture-based Features and a Hybrid Classifier
Background: Multiple Sclerosis (MS) is the most frequent non-traumatic neurological disease capable of causing disability in young adults. Detection of MS lesions with magnetic resonance imaging (MRI) is the most common technique. However, manual interpretation of vast amounts of data is often tedious and error-prone. Furthermore, changes in lesions are often subtle and extremely unrepresentati...
متن کاملPresentation of an efficient automatic short answer grading model based on combination of pseudo relevance feedback and semantic relatedness measures
Automatic short answer grading (ASAG) is the automated process of assessing answers based on natural language using computation methods and machine learning algorithms. Development of large-scale smart education systems on one hand and the importance of assessment as a key factor in the learning process and its confronted challenges, on the other hand, have significantly increased the need for ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011